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VARIATIONAL PRINCIPLES AND CONSERVATION LAWS 
IN THE DERIVATION OF RADIATION BOUNDARY CONDITIONS 

FOR WAVE EQUATIONS 

EDWIN F. G. VAN DAALEN, JAN BROEZE, AND EMBRECHT VAN GROESEN 

ABSTRACT. Radiation boundary conditions are derived for partial differential 
equations which describe wave phenomena. Assuming the evolution of the sys- 
tem to be governed by a Lagrangian variational principle, boundary conditions 
are obtained with Noether's theorem from the requirement that they transmit 
some appropriate density-such as the energy density-as well as possible. 

The theory is applied to a nonlinear version of the Klein-Gordon equation. 
For this application numerical test results are presented. In an accompanying 
paper the theory is applied to a two-dimensional wave equation. 

1. INTRODUCTION 

In this paper it is shown how variational methods and conservation laws can 
be used to derive radiation (or absorbing) boundary conditions for partial dif- 
ferential equations which describe wave phenomena. Such boundary conditions 
are desirable in order to limit the size of the computational domain and thus 
computation time and data storage as much as possible, while minimizing the 
effects of reflected waves on the solution in the interior of the domain. 

Many methods for developing radiation boundary conditions have been used. 
For wave equations, the boundary conditions proposed by Bayliss and Turkel 
[1, 2], Engquist and Halpern [6], Engquist and Majda [7, 8], and Higdon [12, 
13, 14] are well known. These boundary conditions have in common that they 
are based on (properties of) solutions to the partial differential equations under 
consideration. 

In this paper, radiation boundary conditions are derived without the assump- 
tion that solutions are available beforehand, and therefore they are applicable 
to nonlinear and dispersive systems too. Moreover, these boundary conditions 
render the problem well-posed in the sense that the integral of some appropri- 
ate density (e.g., the energy density) over the computational domain does not 
increase. 
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The outline of this paper is as follows. In ?2 we develop a theory of radi- 
ation boundary conditions for continuous systems described by a Lagrangian 
density. This theory is illustrated in ?3 with explicit boundary conditions for 
a nonlinear version of the Klein-Gordon equation. Numerical test results for 
this application are presented and discussed in ?4. The reader is referred to the 
accompanying paper [5] for an application of the theory, including test results, 
to a two-dimensional wave equation. 

2. RADIATION BOUNDARY CONDITIONS FOR CONTINUOUS SYSTEMS 

Consider a continuous system described by the variable u, which is a func- 
tion of the spatial coordinates x = (xI, X2, ... , xn) and the time t. 

It is assumed that the evolution of the system can be derived from a varia- 
tional principle. With a Lagrangian density 2A, an expression in x, t, u and 
partial derivatives of u up to some finite order, the action integral reads 

(1) I= j j S~YdQ dt, 

where T is some time interval, and the spatial domain Q may depend on time. 
Restrictions on the motion of Q will be imposed further on, but first the 

Euler-Lagrange equation for 2 and natural boundary conditions are derived 
under the assumption that the motion of Q is given. 

For the system considered, Hamilton's principle can be summarized by saying 
that the evolution of the system is such that the action integral I has a stationary 
value (see Goldstein [9]). The first variation of I with respect to a variation I 
is defined as 

(2) 31(U; tl) -[I(u+e11)] = Df(u) oa d dt, 
d8 e=0 T Wt 

where 

(3) D2(u) C [ a( +81) 

denotes the Frechet derivative of A , defined for the variation a. 
To arrive at the Euler-Lagrange equation for Y, partial integrations with 

respect to x and t are required, leaving expressions on the boundary when I 
and its partial derivatives do not vanish there. So, in general, the formula for 
partial integration reads: 

(4) DY (u) o I = 6Y (u) I + atWyo(u;) + div7Zu C) 

where 3Y(u) is the variational derivative of Y and 7 and 7 are ex- 
pressions linear in t . 

Substitution of (4) into (2) gives 

(5) 31(u; t)= J [3Y(u)l + &tGy(u; 1)+divR2 (u; 1)]d dt. 

Taking into account the prescribed motion of the spatial domain Q, and ap- 
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plying Gauss' divergence theorem, we can write this equation as 

31(u; 1, = Ih Y(u))dQ dt+ | ud{ Q dt 
(6) TT 

-| I|J (u; j)vn dS dt+ JjY a(u;7) ndS dt, 

where n' is the outward pointing normal to a Q, and Vn is the velocity of the 
boundary in normal direction. 

If we allow I and its partial derivatives to be arbitrary at the boundary aQ, 
but vanishing at the end points of the time interval T, the second term in the 
right-hand side vanishes (since O is linear in I), and the first variation of I 
with respect to I is then given by 

HI(U; ) = 6|Y(u)q dQ dt 

( 7) T Wt 
Ii | | [iY(U; - 1) 4(u; I)vn]dS dt. 

T 0(t) 

From this expression the evolution of the system follows. The Euler-Lagrange 
equation reads 

(8) 3Y(u) =0 in Q, 

and the natural boundary condition on the moving boundary is given by 

(9) -qo(U )n-U; I;v 0)*n on a Q, 
for arbitrary t . 

Example. If the Lagrangian density Y depends on x, t, u and partial deriva- 
tives up to first order only, the Frechet derivative of Y with respect to a 
variation I reads 

(10) DY(u) o I = eu1 + autt + ai tqx 

which can be written as 

( ) ( ) Q [- a u aut uX' . -U, a ut C] X UX, C 

The first variation of I is given by (5), with the variational derivative of Y 
being 

(12) 6Y(u) = au - a aY - ax, ,Yu 

and the expressions on the boundary being 

( 1 3) -? (u ; I) = ,) 1 Q ' 

(14) ayu C) =y T>,> ,,> 86 
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The vanishing of 3I(u; 'i) yields the Euler-Lagrange equation (see (8)) 

(15) -at = 0 
au out x 

and the natural boundary condition (see (9)) 

(16) 88Vn - ni = ? 

For deriving boundary conditions (on a fixed domain of integration) that do 
not influence the solution on the interior of the domain, several options are 
available. One important a priori requirement in the development of radiation 
boundary conditions is that they should not be based on (properties of) solutions 
to the partial differential equations considered, since in general (for nonlinear 
equations) such solutions cannot easily be found (compare this with Higdon's 
derivation of absorbing boundary conditions [13], which is based on an exact 
plane monochromatic wave). 

The possibility that will be examined in this paper is to find boundary con- 
ditions that simulate a moving domain of integration such that the energy is 
conserved as well as possible. The naive idea is that if the correct amount of 
energy is fluxed through the fixed boundary, any reflection caused by the pres- 
ence of the boundary will have little energy and therefore will be small in this 
sense. This reasoning may be valuable, since energy density is a definite quan- 
tity. However, other densities- (e.g., the momentum density) may do as well, as 
we shall show further on. 

In the derivation above, the motion of the domain Q was assumed to be 
given. Then the evolution of the system is completely determined by the Euler- 
Lagrange equation (8) and the natural boundary condition (9). From now on, 
we do not prescribe the motion of the domain Q, but demand instead that Q 
moves in such a way that the integral over Q of some density is conserved. 

In order to show the dependence of the results on the choice of density later 
on, we shall consider quite generally a density for which a local conservation 
law can be obtained with Noether's theorem. For a comprehensive description 
of this well-known theorem the reader is referred to Olver [17] and the historic 
work of Noether [16]. The main principle of Noether's theorem can be formu- 
lated as follows (see Goldstein [9]): if the Lagrangian density is invariant under 
a given transformation of the variables, then there is a corresponding functional 
that is conserved. 

So, let the Lagrangian density 2 be invariant under a variation (0(u); then 
it can be proven that for some scalar density xv(u; (0(u)) and some vector 
density j1(u; (0(u)) it holds thatfor all u 

(17) D2(u) o ((u) = Otx0(u; (0(u)) + divj1(u; ((u)). 
A combination of this equation and the integration-by-part formula (4) yields 
(taking ?I = (0(u)) 

(18) 32'(u) ((u) = at[x0(u; (0(u)) --4 (u; (0(u))] 
+ div[ -*'u (P; (u)) -~ By (; (P W))]I 

leading to a local conservation law of the form 

(19) Ote(u) + div f(u) = 0 
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for solutions to the Euler-Lagrange equation (8). In this equation the density e 
and the corresponding flux density f are given by 

(20) e(u) = x0(u; (0(u)) - _5(u; (0(u)), 

As motivated above, let the motion of Q be restricted in such a way that the 
quantity 

(22) E e(u) d 

is conserved. 
Differentiation of (22) with respect to the time gives 

(23) -= Ote(u) d + j e(u)v, dS. 
d t Qt aQ(t) 

Substitution of (19) and application of Gauss' divergence theorem yields 

(24) dd L(X div[e(u)vi - f(u)] d, 

where v represents a velocity field on Q such that 

(25) Vn =V n 
on the boundary OQ . 

If the quantity E is conserved, then v must satisfy 

(26) j div[e(u)vY - f(u)] d = 0. 

Since the initial domain Q can be taken arbitrarily, v necessarily equals the 
local flux velocity V'f , defined by 

(27) f(u) = vfe(u). 
So, in particular, the normal velocity Vn on the boundary equals the local flux 
velocity in normal direction, 

Ofn-f(U) 
iT 

(28) Vn = Vffl-# * (u) 

at points where e(u) does not vanish. The latter condition can also be obtained 
directly from (23); substitution of (19) and application of Gauss' divergence 
theorem gives 

(29) d J [e(u)vn - f(u) * n-] dS. 

If the quantity E is conserved, then Vn is determined by 

(30) e(U)Vn - AU) * n, = O. 
in accordance with (28). 

Remark 1. Substitution of (27) into (19) gives 

(31) Ote(u) + V V- * e(u) + e(u) div V'f = 0, 
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which in case of a divergence-free flux velocity field Vif reduces to 

(32) De(u) = Ote(u) + Vif f Ve(u) = 0, 
Dt 

expressing that e(u) is constant along the streamlines of the corresponding flux 
velocity field Vf. 

With the explicit expressions (20) and (21) for e and f, respectively, con- 
dition (30) reads 

(33) [X0(u; 0(u)) - -(u; rp(U))vn - [X5(U; rp(u)) - (U; rp(u))] * = 

However, the natural boundary condition (9) already implies (a = (P(u)) 

(34) -o(u; (P u))vn - -(u; (0(u)) * n = 0, 

and so the additional boundary condition for conservation of the quantity E 
is given by 

(35) x0(u; (o(u))vn-i1(u; (()) * 

where x0(u; p(u)) and j1(u; (0(u)) are obtained from (17). 
Summarizing, the proposed boundary conditions for a domain Q that is 

chosen in such a way that the total amount of a density e is preserved, are given 
by the natural boundary condition (9) and the additional boundary condition 
(35). 
Remark 2. If e equals the energy density, then the local flux velocity V5f defined 
by (27) is well known, in particular for linear systems, for which it equals 
the group velocity for monochromatic waves; see, e.g., Biot [3], Broer [4], and 
Lighthill [15]. It is the pointwise version of the centro velocity (i.e., the velocity 
of the center of gravity of the density e), which is given by 

F 
(36) VC = E 

where F_ f (Au) dQ and E f_ a e(u) dQ (see van Groesen [10], van Groe- 
sen and Mainardi [11], and Wehausen and Laitone [19]). 

Remark 3. If e equals the energy density, then the ideas above are related 
to some parts of the earlier work of Whitham (see [20, Chapter 11]). In his 
treatment of energy propagation for the Klein-Gordon equation a slowly varying 
wave train is considered. It is found that the averaged energy density ' and 
the averaged energy flux density 7 (i.e., averaged over one period) satisfy 

(37) J = Qk)?, 

where C(k) denotes the group velocity depending on the wave number k. 
Compare this result with the definition of the local flux velocity in (27). 

Next an averaged energy equation is proposed: 

(38) at? + OX(CF) = 0, 

which is the differential form of the statement that 

The total energy between any two group lines remains constant. 
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Evidently, (38) in combination with (37) can be regarded as a global conser- 
vation law. Compare this with our local conservation law (19). Note that the 
present derivation of radiation boundary conditions started from a similar, yet 
more general, principle, namely the conservation of an appropriate density on 
a moving domain of integration. 

Example. If the first-order Lagrangian density 2 does not depend explicitly 
on x and t, then the energy density can be found with Noether's theorem 
from a variation corresponding to the invariance of 2 with respect to time 
translations, 

(39) (Ou) = ut. 

Similarly, the momentum density in some direction a' is obtained with a varia- 
tion corresponding to the invariance of 2 with respect to spatial translations, 

(40) V(u) = Vu * a' (a# 54 0). 

Substitution of I = ((u) into (10) yields 

(41) D2'(u) o ut = ,9ut + 0 Utt + 0 Utx = at2(u), 

and therefore (17) holds with 

(42) 1(u; (0(u)) = (U) 

(43) X (U (; (O ))= 0. 

Then, indeed, substitution of (13) and (42) into (20) yields the energy density 

(44) e(u)=2'(u)- 49ut' 

with energy flux density (see (14), (43), and (21)) 

(45) fe(u)= (UX 
' 

0UX2 0UX )t 

Similarly, substitution of t1 = V(u) into (10) gives 

(46) D2'(u) o (Vu *= 0' u (Vu a) + (Vu * a)t + (Vu 

= ar V2'(u) = div(62'(u)), 

and (17) holds with 

(47) x0(u; w(u)) = 0, 

(48) -1(I w(u))=c32'(u). 

The momentum density m (in the direction a') reads 

(49) m(u) = - 8 (Vu. *Uo) 

with momentum flux density 

(50) A(u) = ()a'(u) -(02' 02' ___ 
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Substitution of (42) and (43) into (35) yields the additional boundary condition 
in case of energy conservation, 
(51) Sf(u)v =0. 
Similarly, the additional boundary condition in case of momentum conservation 
reads 

(52) 2(u)(da* ) =0. 
Consequently, if we take 
(53) 5(u) =0 
on the boundary OQ, it follows that both energy and momentum (in any di- 
rection) are conserved in this special case! 
Remark 4. In [21], Whitham considers dispersive wave problems in which the 
Euler-Lagrange equation has approximate solutions of the form 
(54) u= U(O, a), 0 =kx-cot, 
where, in the nonlinear case, the amplitude a, the wave number k and the 
frequency co will not be constant; k and o are generalized by defining them 
as 

(55) k= a' CO= - 
It is assumed that co, k, and a are slowly-varying functions of x and t, cor- 
responding to the slow modulation of the wave train considered. The averaged 
Lagrangian L is then defined as 

1 2rx 

(56) L(co, k, a) = j dO 

and is calculated by substituting the uniform periodic solution u = U(O, a) in 
2'. 

The equations for co, k, and a are then obtained from the averaged varia- 
tional principle 

(57) 5JJL(o, k, a)dtdx = 0. 

In the linear case we have 
(58) L(co, k, a) = G(c, k)a2, 
and a variation of L with respect to a yields the linear dispersion relation 
(59) G(co, k) = 0. 
It is then observed that the stationary value of L is zero. Compare this global 
condition (under the assumptions of slowly-varying wave trains and periodic 
solutions) to the pointwise boundary condition (53). 

From now on it is assumed that e equals the energy density of the system 
considered. In consequence, we shall use condition (51) in the next section for 
specific choices of Y. 

3. APPLICATION TO ONE-DIMENSIONAL WAVE EQUATIONS 

In this section we shall apply the theory from the previous section to a nonlin- 
ear one-dimensional wave equation. The boundary conditions obtained will be 
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used to simulate "open" boundaries, i.e., boundaries which give low reflections 
for radiating waves. 

Consider a nonlinear version of the Klein-Gordon equation, 

(60) Utt = c2uXX - V'(u), 

where V'(u) is some nonlinear function of u, and c is the wave velocity. 
This hyperbolic equation arises in various physical problems. For example, if 
V'(u) = sin(u), then (60) is known as the Sine-Gordon equation. 

The action integral for this problem is given by 

(61) 1= jY(u)dxdt 

where the Lagrangian density 2 is a function of u and its first-order deriva- 
tives (note that 2 does not depend explicitly on t): 

(62) 2(u) = 2 (U2_C2U2)_V(U). 

In this paper we shall consider a potential V(u) given by 

(63) V(u) = 2aU2 + I flU4, 

which is an appropriate expansion for even functions V. The choice a = 1, 
fi = -1/3 yields a second-order expansion for the Sine-Gordon equation. In 
our test cases, however, we shall restrict a and ,6 to positive values to guarantee 
the positive definiteness of the energy density, which for this problem reads (see 
(44) and (62)) 

(64) e(u) = 2(U2 + C2U2) + V(U). 

The natural boundary condition for this system is obtained from (16): 

(65) C2Un + Vn Ut = ? 

and (51) yields the additional boundary condition 

(66) [ (u -c2z4)-V(u)]vn = 0. 

From (65) and (66) it can be concluded that either Vn = n= 0 must hold or 

(67) Vn = c 

where Ut and Un are related by 2 = 0, i.e., 

(68) u-c2ux = 2V(u). 

The sign of Vn has to be chosen so as to make sure that no energy flows into the 
spatial domain, since energy inflow might spoil the stability of the problem; if an 
increasing spatial domain is simulated, and conservation of energy is required 
on this domain, no energy inflow will occur on the fixed domain Q. It is for 
this reason that Vn is chosen positive. From (65) it can be seen that this can 
be enforced by requiring 

(69) Unut < 0. 

If /3 = 0, then (60)-(63) reduce to the linear Klein-Gordon equation, 

(70) Utt = c2uxx-sau. 
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Solutions to (70) can be written as 

(71) u = aei6, 0(x, t) = kx - ct, 
where k is the wave number and o is the frequency. 

Substitution of (71) into (70) yields the (linear) dispersion relation 

(72) co 2 = c2k2+ ac, 
from which we may calculate the group velocity 

(73) cg_ dco c2k c2k 

Substitution of (71) into (67) gives (n is taken in the positive x-direction) 

(74) _C 2k 

and we obtain a result we might have expected for the linear case; conservation 
of energy on a moving domain leads to a boundary velocity which equals the 
group velocity. 

Finally, we note that if both a and fi are equal to zero, condition (68) 
reduces to Sommerfeld's radiation condition (see Orlanski [18]) 
(75) ut =-Cun 

corresponding to a boundary velocity which equals the local phase velocity Cf, 

(76) VSommerfeld = C = Cf. 

In the next section we shall use boundary conditions (68) and (75) as radiation 
boundary conditions in several test cases. 

4. NUMERICAL RESULTS 

For the application described in the previous section some numerical tests 
have been carried out. In this section the results from these numerical tests are 
presented and discussed. 

The field equation is given by the nonlinear Klein-Gordon equation, 

(77) utt = uxx - cu - U3 (a, fl > 0). 

Three-point central discretizations have been used for the second-order deriva- 
tives in (77). An explicit Euler scheme has been used here, which is stable if 
the time step is chosen small enough. 

The spatial domain and the time domain are given by 

(78) Q = l-x, 7], 
(79) T= 10, 47f]. 

The initial conditions read 

(80) u(x, O) ={cos2(x) IxI < 7r/2, (81) 'it (0=jxj > <r/2, 

(81) COu (, f)V'TT~+asin(2x), IxI ? 7r/2, (81) 
.~.(xt 

0,1 jxj >7r/2. 
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These conditions represent a wave travelling to the right. It is obvious that 
(80)-(81) does not represent a steady wave for (77). In the small-amplitude 
limit, this initial condition may be regarded as a superposition of many mono- 
chromatic solutions, each of them travelling at a different phase velocity. There- 
fore, it can be expected that from the very beginning some energy will propagate 
to the left. This means that the radiation boundary conditions have to be im- 
plemented in both endpoints. 

The new radiation boundary condition is given by 

(82) t=- + n u + (f/2)u4 

and Sommerfeld's radiation condition reads 
(83) ut =-un. 
Condition (82) can be written as 
(84) Ut =-C(U)un, 

i.e., a Sommerfeld radiation condition (see (75)) where the correction factor (or 
velocity) c(u) is given by 

au2 + (f3/2)u4 
(85) c(u)= 1+ 
If Un approaches zero, which corresponds to a local extremum of the solution 
u near the boundary, then (82) would give a significant value for Ut, involving 
an undesirable change in u at the boundary. Therefore, we set an upper limit 
to the correction velocity: 
(86) c*(u) = min(c(u), VITa). 
The new radiation boundary condition then reads 
(87) ut =-c*(U)Un. 

Since we have chosen an explicit discretization of the field equation, we have 
implemented boundary conditions (87) and (83) explicitly too. 

For lack of analytical solutions to (77) with initial conditions (80)-(81), the 
numerical solutions obtained with (87) and (83) will be compared with the 
solution obtained on an extended spatial domain LI' D Q. It is important that 
Q' is chosen large enough, so that reflections from the boundaries of Q' do not 
reach the smaller domain Q during the chosen time interval T. Test results 
show that this requirement is met by the choice 
(88) Q= [-3r, 37r]. 
On this extended domain the initial conditions (80)-(81) are imposed. Since 
the numerical errors on the interior of Q are equal to those on the interior 
of Q', we get a good indication of the errors due to the radiation boundary 
conditions. 

Three configurations have been used for the calculation of the numerical 
solution to (77) with initial conditions (80)-(81): 

* Configuration 1: the numerical solution is determined on the spatial do- 
main Q with the new radiation boundary condition (87) implemented 
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in the endpoints x = ?+7, where the correction velocity c* (u) is deter- 
mined by (86) and (85). 

* Configuration 2: the numerical solution is determined on the spatial 
domain Q with Sommerfeld's radiation condition (83) implemented 
in the endpoints x = ?ir. 

* Configuration 3: the numerical solution is determined on the extended 
spatial domain Qi' with Sommerfeld's radiation boundary condition 
implemented in the endpoints x = ?3ic. In this way we obtain an 
"undisturbed" (i.e., not disturbed by artificial boundaries) numerical 
solution on the smaller domain Q, which can be used to calculate the 
errors due to the radiation boundary conditions in Configurations 1 and 
2. 

In order to get an indication of the error e = u - U- (Ui denotes the numerical 
approximation to u), we use two norms. The first norm is the L2-norm of e, 
which is defined by 

(89) 116112 = {j62(x t)dx} 

The second norm is an energy norm of e, 

(90) HIEE = j (E2 + E2)dx. 

Five tests have been performed for different combinations of a and ,6. In the 
first three tests, 8 is equal to zero, yielding a linear field equation. However, 
note that boundary condition (87) (Configuration 1) is nonlinear if either a or 
,f is not equal to zero. In the last two tests the values of both a and I? are 
nonzero, yielding a nonlinear field equation. 

Test 1: a = 0.1, fi = 0.0. In this case the (linear) disturbance in (77) is rather 
small. Figure 11 shows the L2-norm of the errors in the solutions obtained 
with Configurations I and 2. In Figure 2 the energy norm of the errors is 
presented. The errors obtained with the new radiation boundary condition are 
about the same as the errors obtained with Sommerfeld's radiation condition. 
An explanation is given by (85): if both a and /1 are small, then the correction 
factor will be but slightly larger than one. 

It is convenient to combine Figures 3 and 4. Figure 3 shows the energy 
of the numerical solution obtained with the first configuration during the first 
two periods. In this graph the parts of rapid decrease in energy correspond to 
high gradients in the numerical solution passing the right boundary x = 7r (see 
Figure 4). Similarly, the inflection point at t = 7r corresponds to the crest of 
the wave arriving at the right boundary. 
Test 2: a = 1.0, ft = 0.0. Because of the larger value of a, which implies a 
stronger (linear) disturbance, the errors are expected to be larger than in Test 1. 
This is confirmed in Figures 5 and 6, which show the L2-norm and the energy 
norm of the errors, respectively. 

For 0 < t < 3 the errors obtained with the first configuration are some- 
what larger than the errors obtained with Configuration 2. For t > 3 there is a 

IIn Figures 1-12 a dashed line equals boundary condition (83) and a solid line equals boundary 
condition (87). 
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clear advantage of the first configuration over the second. Obviously, a is 
large enough to make the correction velocity c* (u) in (8 7) effective. After two 
periods, the energy norms of the errors obtained with Configurations 1 and 2 
are equal to 0.01 and 0.03, respectively. 
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Test 3: a = 5.0, /1 = 0.0. Figures 7 and 8 show a great advantage of the new 
radiation boundary condition over Sommerfeld's radiation condition. After two 
periods the L2-norms of the errors obtained with Configurations 1 and 2 are 
equal to 0.13 and 0.32, respectively. The energy norms of the errors obtained 
are equal to 0.10 (Configuration 1) and 0.45 (Configuration 2). 
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In the last two tests we shall investigate the influence of a nonlinear distur- 
bance in the field equation on the performance of boundary condition (87). 

Test 4: a = 1.0, ,6 = 0.5. Since fi is not equal to zero, the field equation (77) 
is nonlinear. The results obtained with Configuration 1 are better than those ob- 
tained with Configuration 2, as can be seen in Figures 9 and 10. The L2-norms 
after two periods are equal to 0.21 (Configuration 1) and 0.30 (Configuration 
2). The maximum values of the energy norm are equal to 0.02 (Configuration 
1) and 0.03 (Configuration 2). 

Note that for both configurations the errors are but slightly larger than in Test 
2 (a = 1.0, /1 = 0.0) (cf. Figures 5-6). This indicates a dominant linear term 
au in the disturbance in the field equation for this combination of a and Pt. 
Therefore, in the next test we shall increase the impact of the nonlinear term 
flU3 by raising the value of fl . 

Test 5: a = 1.0, ft = 2.0. The expected growth in the errors (see Test 4) can 
only be found in Figure 12, which shows the energy norm of the errors. The 
L2-norm of the error is (for both configurations) of the same order as in Test 
2 (ft = 0.0) . This indicates a stronger variation in the derivatives of the errors 
owing to the stronger nonlinear disturbance (see (90)). 

For this combination of a and fi, Configuration 1 provides better results 
than Configuration 2 (see Figures 11 and 12). The L2-norms of the errors after 
two periods are equal to 0.17 (Configuration 1) and 0.19 (Configuration 2). The 
average values, however, show better results for Configuration 1 than for Con- 
figuration 2. The energy norm after two periods is equal to 0.04 (Configuration 
1) and 0.09 (Configuration 2). 

CONCLUSIONS 
A new method has been presented for developing radiation boundary condi- 

tions for systems governed by a Lagrangian variational principle. These bound- 
ary conditions are based on conservation laws for appropriate densities on a 
moving domain of integration. The main advantage of this method over other 
methods is that it is not based on (properties of) solutions to the field equation 
considered, and therefore it is valid for nonlinear and dispersive systems too. 
Moreover, the boundary conditions obtained render the problem well posed in 
the sense that the integrated density is conserved. 

An explicit boundary condition has been derived for a nonlinear version 
of the Klein-Gordon equation, based on considerations for the energy. The 
numerical test results show a better performance of this new radiation boundary 
condition in comparison with Sommerfeld's radiation condition. 

For an application of the theory to the two-dimensional wave equation the 
reader is referred to [5]. 
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